skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Shenglan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The director field adopted by a confined liquid crystal is controlled by a balance between the externally imposed interactions and the liquid’s internal orientational elasticity. While the latter is usually considered to resist all deformations, liquid crystals actually have an intrinsic propensity to adopt saddle-splay arrangements, characterised by the elastic constant$${K}_{24}$$ K 24 . In most realisations, dominant surface anchoring treatments suppress such deformations, rendering$${K}_{24}$$ K 24 immeasurable. Here we identify regimes where more subtle, patterned surfaces enable saddle-splay effects to be both observed and exploited. Utilising theory and continuum calculations, we determine experimental regimes where generic, achiral liquid crystals exhibit spontaneously broken surface symmetries. These provide a new route to measuring$${K}_{24}$$ K 24 . We further demonstrate a multistable device in which weak, but directional, fields switch between saddle-splay-motivated, spontaneously-polar surface states. Generalising beyond simple confinement, our highly scalable approach offers exciting opportunities for low-field, fast-switching optoelectronic devices which go beyond current technologies. 
    more » « less